25小说网 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

1、将特征重要程度排序的过程与模型构建过程同时进行的特征选择方法称作嵌入式特征选择方法( √ )2、线性回归模型的目标函数为残差平方和最大化(残差平方和最小化 )3、特征向量中心度度量节点在网络中的影响力。网络中每个节点被赋予一个影响力分数,一个节点与更多的高分节点相连,其分数也趋向于更高。( √ )4、强化学习使用已标记的数据,根据延迟奖励学习策略。( 未标记的数据,通过与环境的交互来收集数据进行学习 )5、过拟合是机器学习中一个重要概念,是指模型过于复杂,导致对测试数据预测很好,但对训练数据预测很差。( 对训练数据预测很好,对测试数据预测很差 )三、分析题(本题满分30分,共含5道小题,每小题6分)1、现有样本如下:0,2,3,4,5,6,7,8,9,10,41,42,43,44,45,46,47,48,49,50。使用等距离散化来处理该样本,将样本分为5个区间段。有几个区间内样本容量不为0?你的答案:2你的计算过程:首先,计算样本的最小值和最大值:最小值:0最大值:50然后,确定分为5个区间时的间距:(最大值 - 最小值) \/ 区间数 = (50 - 0) \/ 5 = 10接下来,以间距为10进行等距离散化:区间1:0-9 (共10个样本)区间2:10-19 (无样本)区间3:20-29 (无样本)区间4:30-39 (无样本)区间5:40-50 (共11个样本)根据以上结果,有2个区间段(区间2和区间3)内的样本容量不为0。请注意,这种等距离散化方式可能导致某些区间没有样本,而其他区间样本较多。2、随机森林采用的是什么集成方法?(A. bagging,b.boosting,c.Stacking)。这种集成方法适用于什么情况?你的选择:bagging你的解释:bagging(自举汇聚法)适用于以下情况:训练数据较少,需要尽可能充分利用现有的有限样本。数据集存在较强的噪声或离群点,需要通过多个模型的平均来减小噪声影响。需要降低模型的方差,提高模型的稳定性和鲁棒性。模型复杂度较高,容易过拟合,需要引入随机性增加泛化能力。bagging通过对原始训练集进行有放回的抽样,构建多个子模型。每个子模型相互独立地训练,并通过取平均值(回归问题)或投票(分类问题)的方式进行预测。随机森林就是一种基于bagging思想的集成学习算法,它使用决策树作为基分类器,并通过对特征的随机选择进一步增加模型的多样性。由于bagging的平行结构,随机森林可以有效处理大规模数据,具有较好的预测性能和计算效率。3、为了考察一种新的教学方法对学生英语成绩的影响,某学校进行了调查,共得到400个样本数据。数据表中GRAdE为标签,pSI、GpA、tUc为特征。GRAdE为分类数据,取1表示学习成绩提高,0表示学习成绩没有提高;pSI为分类数据,取1表示接受了新的教学方法指导,0表示没有接受新的教学方法指导;GpA表示学生平均积分点,为数值型数据;tUc表示以往的学生成绩,为数值型数据。假如,想了解GpA、tUc和pSI对学生成绩是否有影响,以及预测学生学习成绩是否会提高,你会选择下述用哪个。

模型?为什么?(A.线性回归 b.逻辑回归 c.聚类 d.关联规则挖掘)你的选择:逻辑回归你的解释:逻辑回归是一种广泛应用于分类问题的机器学习算法。在这个情况下,我们的目标是预测学习成绩是否提高,这是一个二分类问题,即学习成绩提高或不提高。逻辑回归可以用来建立一个概率模型,根据给定的特征值(GpA、tUc和pSI),计算出学生成绩提高的概率。逻辑回归模型的输出是一个概率值,表示学生成绩提高的可能性。这使得我们能够根据学生的特征值进行预测,并判断他们学习成绩是否会提高。此外,逻辑回归还可以提供每个特征的权重系数,帮助我们理解各个特征对学生成绩的影响程度。线性回归 (A.线性回归) 也可用于这个问题,但它更适用于连续数值型的目标变量的预测,而不是二分类问题。聚类 (c.聚类) 是无监督学习方法,不适用于这个情况。关联规则挖掘 (d.关联规则挖掘) 通常用于发现数据中的频繁项集和关联关系,不太适合用于预测学生成绩的问题。因此,在给出的选项中,选择使用逻辑回归模型(b.逻辑回归)是合适的,它可以用于预测学生学习成绩是否会提高,并了解GpA、tUc和pSI对学生成绩的影响程度。4、K-means算法在给定数据集上运行第一次后的结果为,数据集分为三个簇: cluster1: (1, 3)、 (2,4);cluster2: (4, 0) 、(2, 0);cluster3 :(0, 3)、 (0, 5)。样本(0, 3)和cluster2的质心之间的曼哈顿距离为:你的答案:5你的计算过程:cluster2的质心:(4+2)\/2=3;0样本的坐标是 (0, 3),cluster 2 的质心是 (3, 0)。将给定的点代入公式,我们有:d = |3 - 0| + |0 - 3|= |3| + |-3|= 3 + 3= 6。

。。

1bagging(包装法):优势:bagging通过随机有放回地对训练数据进行采样,每个基分类器独立训练,然后通过投票或平均等方式进行集成,能够有效降低过拟合风险,提高模型的泛化能力。它尤其适合在高方差的模型上使用,如决策树等。局限性:对于高偏差的模型来说,bagging可能无法显着改善模型性能。此外,由于基分类器的独立性,bagging不容易处理存在较强相关性的数据,比如时间序列数据。使用场景:bagging通常用于分类和回归问题,在数据集较大且噪声相对较小的情况下表现良好。2boosting(提升法):优势:boosting通过迭代地训练一系列基分类器,并根据前一个分类器的性能对样本权重进行调整,使得基分类器逐渐关注于难以分类的样本。它能够有效提高模型的精度和泛化能力,尤其适合解决高偏差的问题。局限性:boosting对噪声和异常值比较敏感,容易导致过拟合。此外,由于基分类器之间存在依赖关系,boosting的训练过程相对较慢。使用场景:boosting通常用于分类问题,在需要处理高偏差或低准确度的场景下表现出色。3Stacking(堆叠法):优势:Stacking通过在多个基分类器上构建一个元分类器来进行集成,可以充分利用各个基分类器的预测结果,进一步提升性能。通过允许使用更复杂的元分类器,Stacking具有更强大的表达能力。局限性:Stacking的主要挑战在于选择合适的元特征以及使用交叉验证避免数据泄露。此外,Stacking通常需要更多的计算资源和时间来进行模型训练和预测。使用场景:Stacking适用于各类机器学习问题,并且在数据集相对较大、前期已经进行了一定特征工程的情况下效果较好。

25小说网推荐阅读:绝色兽夫又撩又野,霸道拥我入怀民国谍战,卧底巅峰凡人修仙:无尽底牌仙灵:这师徒俩真好磕完美演技系统美人不幸【快穿】快穿之成精日常BL游戏超前体验特工的年代生涯长公主沉迷造反,但有六个男主英雄无敌之终焉的审判他的暗恋翻涌饲爱重生之盛世女神探修仙从狗开始冷面王爷绝情妃貔貅幼崽靠玄学爆红娱乐圈弃妃?女帝手执长鞭抽翻渣夫爹跳崖娘殉葬,这家没我要完蛋她竟然如此跟班十八岁龙族:路明非她命中缺鬼,鬼王的鬼蝶舞流星满嘴芬芳旅行异世界我本仙人与凤行:让你当怂包,你成上古神终极一家孤儿想做人的那些日子云在天边水在瓶妙龄少女是杀手:御姐独宠小奶猫咒术回战:没有外挂要如何HE?越过丘山要命!和绝色小暗卫中了双修情蛊星穹铁道:开局魂穿可可利亚穿越谍战,我有一个每日情报系统斗罗:异火武魂,开局十万年魂环平凡者的修仙妃本纯洁之轻狂太子妃盐河若有意爱之奇特圆之恋异途诡道女配她只想活命,霸总非要谈恋爱小马宝莉:快穿之小马新世界笨蛋美人不装了,玩弄权术第一人站姐手握系统成顶流乱世之巅峰召唤云中遥寄锦书来诡异共生,我才是真正的怪物!斗罗:武魂殿七杰
25小说网搜藏榜:凡人修仙:无尽底牌冷面王爷绝情妃貔貅幼崽靠玄学爆红娱乐圈弃妃?女帝手执长鞭抽翻渣夫爹跳崖娘殉葬,这家没我要完蛋她竟然如此跟班十八岁龙族:路明非她命中缺鬼,鬼王的鬼蝶舞流星满嘴芬芳旅行异世界我本仙人与凤行:让你当怂包,你成上古神仙灵:这师徒俩真好磕终极一家孤儿想做人的那些日子云在天边水在瓶妙龄少女是杀手:御姐独宠小奶猫咒术回战:没有外挂要如何HE?越过丘山要命!和绝色小暗卫中了双修情蛊星穹铁道:开局魂穿可可利亚穿越谍战,我有一个每日情报系统斗罗:异火武魂,开局十万年魂环平凡者的修仙妃本纯洁之轻狂太子妃盐河若有意爱之奇特圆之恋异途诡道女配她只想活命,霸总非要谈恋爱小马宝莉:快穿之小马新世界笨蛋美人不装了,玩弄权术第一人站姐手握系统成顶流乱世之巅峰召唤云中遥寄锦书来诡异共生,我才是真正的怪物!斗罗:武魂殿七杰七零,最野军官被外科大佬拿捏了现代女不讲武德,村民躲灾她致富我的世界即是你摄政王又怎样,王妃不稀罕原神的愿望从超神开始的英雄联盟穿越1937,我来讨伐关东军盛宠蛊妃:邪魅王爷别乱来王者:开局拿捏花木兰重生人在惊奇先生死神:拒绝下线卯之花我在明朝开了挂斗罗,敢凶我别怪我吃恶魔果
25小说网最新小说:无限幽界:逆流者的试炼之途穿越四合院世界,开局娶妻秦淮茹晚年被老婆分手,我打造最强家族海贼世界的自由人精彩修仙传悬案册,云隐市追凶实录!侍妾娇媚,狠戾王爷日日夜夜哄冷宫弃妃她成了权臣的心头肉!喜大普奔,修真界大杀神有人管了谍战:开局叛逆者,谁有我更拽!猫姬原始至尊化修罗月师妹那么乖,怎么可能会是海王梦近南山春来晚我,多世界拯救者,煎饼果子之神那年那时的青春重生保姆四十岁,豪门大佬宠上天惊悚领域:从精神病院进入诡世界崩铁:世一剑,从星核猎手开始我的奇葩室友:都市爆笑合租记家族修仙,我为镇族灵石宿敌就是宿敌,怎么能变成你老婆吃瓜上位,我成了暴君的唯一信仰都穿越了,当然是躺平咯玄学大佬下山,成团宠很合理吧夫君迎穿越女进门那日,她觉醒了一言不合拔腿就跑的将军夫人摆脱,谁爱宅斗啊修仙不好吗?地府来的疯批师妹,带宗门狂上天新妇一身反骨,给婆家挨个添堵四合院:分家是你,你羡慕啥?我才一岁,系统让我逆袭什么鬼?葬仙棺给食戟来点万界食材霸道总裁之诡计多端的爱修仙而已,谁还不是个天道宠儿?无限逃杀:恶女进化论老实修仙,但他们都说我欠了情债穿越魏晋南北朝,之乱世求生记一念沉沦黑月光泄露心声后,所有人都慌了三叔别考了,我爹已经黄袍加身了穿越为妾,白月光竟是我自己神尊大人又跪搓衣板啦心机美人要亲亲!将异族太子勾疯精灵:六王开局不小心无敌了重生靖康年,我朱元璋打造铁血大宋我凭一手好菜称霸星际,火出圈了我弃爱你慌啥?废柴女逆袭仙途再入轮回护我妻